Get Mystery Box with random crypto!

arXiv:We study the distributions of the baryons in massive hal | Astronomical Informant

arXiv:We study the distributions of the baryons in massive halos ($M_{vir} > 10^{13} \ h^{-1}M_{\odot}$) in the $Magneticum$ suite of Smoothed Particle Hydrodynamical cosmological simulations, out to the unprecedented radial extent of $10 R_{500,\mathrm c}$. We confirm that, under the action of non-gravitational physical phenomena, the baryon mass fraction is lower in the inner regions ($6 R_{500,\mathrm c}$), where the baryon depletion factor $Y_{\rm bar} = f_{\rm bar} / (\Omega_{\rm b}/\Omega_{\rm m})$ approaches the value of unity, expected for "closed-box" systems. We find that both the radial and mass dependency of the baryon, gas, and hot depletion factors are predictable and follow a simple functional form. The star mass fraction is higher in less massive systems, decreases systematically with increasing radii, and reaches a constant value of $Y_{\rm star} \approx 0.09$, where also the gas metallicity is constant, regardless of the host halo mass, as a result of the early ($z>2$) enrichment process.

via astro-ph updates on arXiv.org https://ift.tt/6PXVpc8